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Abstract
Factor-based attribution leaves residuals, and Brinson-style attribution introduces an
interaction term that many investors find uninformative. Both obscure the link between
portfolio performance and the manager’s actual investment decisions.

We show that these limitations can be resolved within a unified regression-based
framework. By expressing both factor and Brinson attributions as weighted regressions
and imposing a single linear restriction that enforces active-exactness, forcing the portfolio-
weighted residual or interaction terms to vanish, we reallocate these nuisance components
in the statistically least-distorting way. The resulting attributions are complete: every
element of portfolio performance is explained by identifiable investment decisions, with
adjustments proportional to their statistical uncertainty.

This approach combines the statistical rigor of factor attribution with the intuitive struc-
ture of Brinson analysis, yielding an internally consistent and decision-based foundation
for complete portfolio return attribution. For practitioners, it produces cleaner reports,
clearer interpretation, and a principled alternative to ad hoc reallocations of residuals and
interaction effects.
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1 Introduction
Portfolio return attribution is a central tool in performance evaluation for
investment funds. The classical allocation-selection framework of Brinson
and Fachler (1985) and Brinson, Hood, and Beebower (1986) decomposes
active returns into allocation, selection, and interaction effects. Alternatively,
factor-based performance attribution uses regression techniques to explain
portfolio returns through exposures to systematic factors and residual id-
iosyncratic returns (see, for example, Grinold (2006)).

Spaulding (2003) argues that a complete attribution should satisfy two
“laws”: it must attribute performance to the manager’s actual decisions
and exhaust all returns without residuals. We formalize these principles as
linear restrictions within a regression framework, ensuring that all portfolio
returns are assigned to identifiable investment decisions in a statistically
efficient and internally consistent way.

Standard factor attribution separates portfolio returns into factor com-
ponents and unidentified residuals. These residuals are an inevitable part
of factor regressions but represent a nuisance for performance attribution.
We reallocate these residuals to factor returns using a restricted generalized
least squares (gls) update that enforces completeness while minimizing sta-
tistical distortion. Because the restriction adds only one degree of constraint,
the adjustments are typically small and fall on the least precisely estimated
factor returns.

The same logic extends to allocation-selection attribution, where the
interaction term plays a role analogous to residuals in factor models. In
Brinson, Hood, and Beebower (1986), portfolio returns are decomposed
into allocation across groups, selection within groups, and an interaction
term measuring how well selection worked in overweighted groups. This
interaction is usually treated as a nuisance and reallocated to allocation or
selection components through ad hoc rules.1 Although Brinson-style attri-
bution is commonly treated as a calculation, we reinterpret this framework
statistically, allowing interaction effects to be redistributed across allocation
and selection components according to their relative estimation precision,
in a way that minimizes the statistical distortion to both.

Practical guides such as Bacon (2004) have made these attribution ap-
proaches mainstream, but they leave either residuals or interaction terms
that can obscure the manager’s true contribution. We unify these approaches

1 Spaulding (2008) describes some common static reallocation rules and proposes a set of
conditional reallocation rules.
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2 A Unified Framework for Complete Portfolio Return Attribution

within a single regression-based framework that provides a principled sta-
tistical foundation for reallocating nuisance components.

Section 2 introduces the restricted-regression method for reallocating
residual return components in factor attribution. Section 3 derives the
Brinson, Hood, and Beebower (1986) allocation-selection decomposition
from benchmark- and portfolio-weighted regressions and applies the same
restriction to eliminate interaction effects. Section 4 presents illustrative
examples showing how the reallocation depends on relative estimation
precision. Section 5 concludes.

2 Factor-Based Attribution
Suppose we have N assets and write the N-dimensional vectors r for returns,
wP for portfolio weights, and wB for benchmark weights. Let the N × K
matrix X contain the assets’ exposures to K factors, which may include both
risk factors and alpha factors. (See Connor (1995) and Grinold (2006), for
example.) In broader practice, such factor structures often trace back to
empirical asset pricing models such as Fama and French (1993). Throughout,
bold symbols denote vectors and matrices; scalars are not bold.

2.1 Classical decomposition
Factor attribution starts from the cross-sectional linear model for returns

r = X f + u, (1)

where f are factor returns and u are idiosyncratic (security-specific) resid-
uals. Asset returns, factor exposures, factor returns, and residual returns
vary over time. For simplicity, we suppress time subscripts on all variables.

The portfolio’s active return decomposes as

rA = w′
Pr−w′

Br

= (wP −wB)′X f + (wP −wB)′u

= w′
AX f + w′

Au, (2)

where wA ≡ wP −wB are the active portfolio weights.

The first term is the factor-driven return contribution. The second term
is the unexplained residual return contribution.

If the factors are generic risk factors, investors often refer to the residual
contribution as “security selection.” While this may be technically correct, it
obscures essentially all investment decisions made by the portfolio manager.
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A clearer approach includes alpha factors in X and f that drive the main
investment decisions. The return contributions from these alpha factors lay
bare the success or failures of the individual investment decisions. In this
case, however, interpreting the residual return contributions as “security
selection” is no longer correct. The residual returns now capture deviations
from the factors. Such deviations may arise because the factor model does
not fully capture all of the factors or because the portfolio construction leads
to deviations from the alpha factor portfolios.

Especially in systematic investment processes, the portfolio manager
generally tries to minimize deviations from the alpha factor portfolios. As a
result, we should expect the residual return contributions to be relatively
small. Even when they are small, however, the residual return contributions
can be a nuisance in performance reporting.

2.2 Regression formulation
We generally estimate factor returns via a cross-sectional regression, possibly
with a weight matrix W f , which yields the factor return estimates

f̂ = (X ′W f X)−1X ′W f r. (3)

Common choices for the weighting matrix are W f = I (for ols), W f =
diag(market cap) (for market cap weighting), or W f = diag(precision) (for
inverse-variance weighting). Different W f reflect different views about
which securities should anchor the cross-sectional “factor plane.” Our
qualitative results are not sensitive to reasonable choices of W f .

2.3 Reallocating residuals
To avoid a residual line item at the portfolio level, we can estimate restricted
factor returns f̂ ∗ that satisfy

w′
AX f̂ ∗ = w′

Ar. (4)

This restriction implies

w′
Au = 0, (5)

so that we reallocate what would otherwise appear as a residual return
contribution to the factor return contributions.

Although Greene and Seaks (1991) argue that solving the associated
Lagrangian system is numerically preferable we also present the analytical
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solution because it shows exactly how the restriction reallocates residuals
across factors.

Analytical solution

In our case, we estimate the factor returns using gls with weighting matrix
W f but impose a linear constraint using the unweighted, raw asset returns
r. We focus on the raw returns since they are used in attribution.

Define

Ω = (X ′W f X)−1. (6)

to be the usual covariance of the estimated factor returns.
Theil (1971) derives the restricted gls estimate of the factor returns, which

we can write as a single-constraint update of the unconstrained factor return
estimates f̂ ,

f̂ ∗ = f̂ + Ω X ′wA
(
w′

AX Ω X ′wA
)−1 w′

A(r− X f̂ ). (7)

This is a textbook result for gls estimates subject to linear restrictions on
the coefficients.2

This solution adjusts the unconstrained factor returns f̂ just enough
to satisfy the restriction w′

A(r − X f̂ ∗) = 0, so that the portfolio-weighted
residuals vanish and the active portfolio return is fully explained by the
factor contributions,

rA = w′
AX f̂ ∗. (8)

The overall adjustment is proportional to Ω, so the restricted estimate
makes larger changes to those factor returns that are estimated with greater
uncertainty. Sneddon (2021) highlights that factor attribution commonly
contains estimation noise. Here, we allocate the residual return contributions
to the factor return contributions in a manner that takes the best advantage
of the flexibility offered by estimation noise.

The adjustment term ΩX ′wA
(
w′

AXΩX ′wA
)−1 can be interpreted as

the regression coefficient of the factor vector on the fitted active return.
Since ΩX ′wA = Cov( f̂ , r̂A) and w′

AXΩX ′wA = Var(r̂A), the update f̂ ∗ −

2 See, for example, equation (8.5) in Theil (1971). Let the restriction be Rβ = q with
R ≡ w′

AX and q ≡ w′
Ar. Theil’s formula is β̂ ∗ = β̂ + ΣβR′(RΣβR′)−1(q − Rβ̂). After

substituting β̂ = f̂ and Σβ = Ω, we find f̂ ∗ = f̂ + Ω X ′wA
(
w′

AX Ω X ′wA
)−1 w′

A(r − X f̂ ).
Alternatively, the result follows from the more common textbook form of the restricted ols

estimator after replacing the covariance of the unrestricted estimates, (X ′X)−1, with the gls

covariance, Ω. See Greene and Seaks (1991), for example.
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f̂ = β f |r̂A
w′

A(r − X f̂ ) adjusts factor estimates in proportion to their beta
with the fitted active return and in proportion to the distance from the
constraint. Factors that are more relevant, those with higher beta to the
active fitted return, absorb a larger share of the adjustment, and factors with
larger estimation variance move farther because such shifts incur a smaller
statistical cost.

In statistical terms, the restriction redistributes the unexplained returns
across factors in the least-distorting way, satisfying the active-exactness
constraint with minimal loss of likelihood.

Discussion

The restriction ensures that the portfolio has no residual return contributions.
This can be extremely convenient when the factors include the primary alpha
factors that drive the portfolio weights. Although the portfolio most likely
incurred some residual returns, these returns are a reporting nuisance, even
when they represent a small part of the total returns.

Investors often use ad hoc methods to distribute the residual returns to
the factor returns in order to avoid itemizing them.

The restricted regression statistically reallocates the residual returns to
the factor returns in a way that has the smallest impact on the overall fit of
the factor regression. When the estimation universe contains a substantial
number of securities N, this single linear restriction generally has minimal
impact on the regression fit. The reallocation mostly changes the factor
returns that are estimated with the least precision.

It is important, however, that the portfolio manager remains aware of
the residual returns. Especially when residual returns are material, they
may warrant the attention of the portfolio manager. For internal analysis,
it probably is wise to consider both the unrestricted attribution and the
restricted attribution.

Next, we apply the same logic to Brinson-style attribution: We interpret
the attribution in regression terms and impose a single linear restriction in
order to remove the interaction term by the smallest statistically justified
adjustment.

3 Brinson Attribution
Brinson and Fachler (1985) and Brinson, Hood, and Beebower (1986) de-
scribe attribution that partitions active returns by groups (e.g., sectors).
Each asset belongs to a group g(i) ∈ 1, . . . , G, and the attribution divides
portfolio return contributions into allocation decisions across groups, selec-



6 A Unified Framework for Complete Portfolio Return Attribution

tion decisions within groups, and an interaction term that ensures that the
decomposition exactly matches the portfolio’s active return.

3.1 Classical decomposition
The classical Brinson decomposition of the active return rA is

rA = ∑
g

(wP,g − wB,g)(rB,g − rB) +

∑
g

wB,g(rP,g − rB,g) +

∑
g

(wP,g − wB,g)(rP,g − rB,g). (9)

Here, wP,g and wB,g are the portfolio and benchmark exposures to group g,
rP,g and rB,g are the corresponding within-group returns, and rB is the total
benchmark return.

The three terms represent allocation, selection, and interaction effects,
respectively. The interaction term has a natural covariance interpretation: It
is positive when the portfolio has positive allocation effects in groups where
it also has positive selection effects. Nonetheless, the interaction term is
generally treated as a nuisance: necessary for arithmetic completeness but
not easily interpreted on its own. As a result, investors commonly reallocate
it to the allocation or selection components using ad hoc rules.

3.2 Regression formulation
The attribution in equation (9) is usually interpreted as a mechanical arith-
metic identity. But this view obscures the structure that makes the Brinson
results consistent with standard regression-based attributions. We can ex-
press the same relationships in regression form without changing any of
the components. Doing so clarifies the estimation precision of the allocation
and selection terms and provides a statistical foundation for a principled
reallocation of the interaction term. This may seem like a conceptual leap
from the Brinson arithmetic, but it relies only on standard results from
weighted least squares regression.

We can view the within-group averages rP,g and rB,g as estimates of
group mean returns obtained from two weighted least squares (wls) regres-
sions. Let D be an (N × G) dummy matrix indicating each asset’s group
membership. The benchmark- and portfolio-weighted regressions are

r = DµB + εB, µ̂B = (D′WBD)−1D′WBr, (10)
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and

r = DµP + εP, µ̂P = (D′WPD)−1D′WPr, (11)

with WB = diag(wB) and WP = diag(wP). Each regression simply com-
putes the weighted average return in each group. This is exactly what the
classical Brinson arithmetic does.

These regressions correspond to the unique factor models that reproduce
Brinson-style attribution exactly. Each model contains only the group-
dummy factors, and the weighting matrices must be the benchmark and
portfolio weights, WB and WP, respectively. Using any other factors or
weights would produce a different decomposition and therefore depart
from the classical Brinson results. In contrast, elsewhere in this paper our
generalized gls framework allows flexible factor sets and weighting matrices.
Here, however, the dummy-only specification with these specific weights is
the only one consistent with the standard Brinson components.

Thus, the fitted means µ̂B,g = (∑i∈g wB,iri)/(∑i∈g wB,i) and µ̂P,g =
(∑i∈g wP,iri)/(∑i∈g wP,i) = rP,g are the familiar group average returns for
the benchmark and portfolio, respectively. The fitted values

r̂B = Dµ̂B, r̂P = Dµ̂P, (12)

reproduce the benchmark’s and portfolio’s group-level fitted returns. We
then have r̂B,g = rB,g and r̂P,g = rP,g. To emphasize the regression source of
these values, we will use the “hat” notation for these fitted returns in the
remainder.

The difference between the fitted returns, r̂P − r̂B = D(µ̂P − µ̂B), repre-
sents the change in estimated group means when moving from benchmark
to portfolio weighting.

Expressed in this notation, the Brinson decomposition is

rA = w′
A(r̂B − rBι) +

w′
B(r̂P − r̂B) +

w′
A(r̂P − r̂B), (13)

where ι is an N-vector of ones and wA = wP − wB. The three terms
correspond exactly to allocation, selection, and interaction effects, as in the
arithmetic decomposition of equation (9). The regression representation
simply provides a statistical framework for reasoning about their sampling
variability, covariance, and optimal reallocation.
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Having cast Brinson attribution as two parallel wls regressions, we
now apply the same single active-exactness restriction used for factors
(section 2.3) to the stacked group-mean estimates. Imposing w′

ADHm = 0
eliminates the interaction term and, via restricted gls, adjusts µ̂B and µ̂P by
the smallest gls distance; see section 3.4.

3.3 Reallocating interaction effects

Rather than ad hoc splits, the restricted-gls update redistributes the in-
teraction across allocation and selection according to their relative impre-
cision encoded in Γ: precise components move little, noisier ones move
more. Equivalently, the share absorbed by each side is proportional to
its covariance (beta) with the fitted active return (see section 3.4). When
the two regressions have similar precision, the split is near 50/50; if the
portfolio-weighted regression is less precise (e.g., because of greater port-
folio concentration), more of the interaction is assigned to allocation, and
conversely when it is more precise.

3.4 Active-exactness as a restriction on both regressions

Our goal is to reallocate the interaction term by imposing a single linear
restriction that makes the active return equal the sum of allocation and
selection effects. We seek adjusted group means µ̂ ∗B and µ̂ ∗P such that, using
the active portfolio weights wA, the portfolio-weighted difference in group
means is zero

w′
AD

(
µ̂ ∗P − µ̂ ∗B

)
= 0. (14)

This “active-exactness” restriction ensures that the total active return rA

is fully explained by the adjusted allocation and selection effects, with no
residual or interaction term.

To express this compactly, define the stacked vector of group-mean
estimates

m̂ ≡
[

µ̂B

µ̂P

]
, (15)

and let H extract the difference between the two halves,

H ≡
[
−IG IG

]
, so that Hm̂ = µ̂P − µ̂B. (16)
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Then the active-exactness condition in equation (14) can be written as a
single linear restriction on the stacked means

w′
ADHm̂ = 0. (17)

Among all adjusted means m∗ that satisfy this restriction, we want the one
that is statistically most plausible, the one closest to the original estimates
in the gls sense. This leads to the restricted gls problem

min
m

1
2 (m− m̂)′Γ−1(m− m̂) s.t. w′

ADHm = 0, (18)

where Γ is the joint covariance of the stacked estimates,

Γ =

[
ΣB ΣB,P

ΣP,B ΣP

]
. (19)

This is a standard gls problem with a single linear restriction. As for the
restricted factor returns, we can follow Theil (1971) and write the restricted
estimate of the group means as

m̂,∗ = m̂ + Γ H ′D′wA
(
w′

ADH Γ H ′D′wA
)−1(0−w′

ADHm̂
)
. (20)

This makes small adjustments to the group means in µ̂B and µ̂P in order to
just satisfy the constraint that the interaction term in the attribution is 0.

The size of the adjustment depends on two components of this ex-
pression: the covariance matrix Γ, which captures the statistical uncer-
tainty of the group-mean estimates, and the deviation from the restriction,
(0−w′

ADHm̂), which measures how far the unrestricted estimates violate
active-exactness. The covariance governs the relative size of the adjust-
ments. Group means that are more uncertain or more inconsistent with
the restriction receive proportionally larger adjustments, while precise or
already-consistent estimates remain largely unchanged. The deviation from
the restriction governs the total size of the adjustment.

Unstacking m̂ ∗ into its benchmark and portfolio components yields the
adjusted group means

m̂ ∗ =

[
µ̂ ∗B
µ̂ ∗P

]
, so that r̂ ∗B = Dµ̂ ∗B , r̂ ∗P = Dµ̂ ∗P . (21)

By construction, the restriction w′
AD(µ̂ ∗P − µ̂ ∗B) = 0 is exactly satisfied, so

that the interaction component of the Brinson decomposition vanishes while
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both the benchmark- and portfolio-weighted regressions remain as close as
possible (in gls distance) to their unconstrained estimates.

With these adjusted fitted vectors, the complete attribution without an
interaction term is

rA = A∗ + S∗, A∗ = w′
A(r̂ ∗B − rBι), S∗ = w′

B(r̂ ∗P − r̂ ∗B ). (22)

The constraint ensures that the total active return equals the sum of al-
location and selection effects, while the gls weighting ensures that the
adjustments to r̂B and r̂P are statistically optimal – larger for the noisier
estimates, smaller for the precise ones.

Precision inputs for the stacked restriction

When a reliable full return covariance Σ is available, for example from a risk
model, we obtain the regression residual covariance under generic weights
W from the wls hat matrix in raw return space,

PW = D(D′W D)−1D′W , MW = I − PW , ∆ = MW Σ M ′
W . (23)

In practice we set W = WB for consistency with benchmark-relative re-
porting, but any reasonable choice (cap or precision weights) only affects
precision weighting, not the active-exactness identity.3

Because the estimates µ̂B and µ̂P are linear in r, we write

µ̂B = D′ABr, D′AB ≡ (D′WBD)−1D′WB, (24)

µ̂P = D′APr, D′AP ≡ (D′WPD)−1D′WP. (25)

and obtain the needed covariances by propagation

ΣB = D′AB ∆ D′A′B, ΣP = D′AP ∆ D′A′P, ΣB,P = D′AB ∆ D′A′P. (26)

These blocks define Γ used in the restricted gls update (20).
If Σ is unavailable, we can use a shrinkage estimator of the sample co-

variance, as suggested by Ledoit and Wolf (2004). As fallbacks, the diagonal
sample variances ∆ = diag(σ̂2

1 , . . . , σ̂2
N) or even ∆ = I are acceptable. These

only affect the precision weights. The constraint guarantees exactness under
any reasonable covariance matrix.

3 In principle, one could compute separate residual covariances ∆B = MWB ΣM ′
WB

and
∆P = MWP ΣM ′

WP
to reflect the distinct weighting structures of the benchmark- and portfolio-

weighted regressions. In practice, however, using a single residual covariance ∆, typically based
on WB for consistency with benchmark-relative reporting, yields nearly identical results for
benchmark-aware portfolios.



Illustrative Examples 11

Process summary

In summary, we compute complete Brinson-style attribution with zero
interaction terms as follows.

1. Run the two unrestricted wls return regressions under benchmark
and portfolio weights.

2. Obtain the return covariance Σ̂ and construct the residual covariance
∆̂ = MW Σ̂ M ′

W .
3. Propagate ∆̂ to the group-mean covariances ΣB, ΣP, and ΣB,P, and

assemble the joint covariance Γ.
4. Apply the restricted gls update (20) to obtain the adjusted group

means (µ̂ ∗B , µ̂ ∗P) that satisfy w′
AD(µ̂ ∗P − µ̂ ∗B) = 0.

5. Compute the adjusted attribution components A∗ = w′
A(r̂ ∗B − rBι)

and S∗ = w′
B(r̂ ∗P − r̂ ∗B ) = S + I − (A∗ − A), so that rA = A∗ + S∗ with

no interaction term.

The procedure can be viewed as a two-step solution: first estimate the
benchmark- and portfolio-weighted group means as in the standard Brinson
decomposition, then adjust both by restricted gls so that the active return
identity holds exactly. The result preserves the familiar structure of Brinson
attribution while reallocating the interaction term in a statistically optimal,
least-distorting manner.

Next, we show that for similar portfolio and benchmark weights, the
gls weights approach equality and the interaction is reallocated about
50/50 across allocation and selection components. When the portfolio is
substantially more concentrated (or more diversified) than the benchmark,
the gls weighting tilts toward the more precise regression, reallocating
more of the interaction toward the allocation (or selection) component,
respectively.

4 Illustrative Examples
Consider G = 2 groups with benchmark weights wB,1 = wB,2 = 0.5 and
portfolio weights wP,1 = 0.6, wP,2 = 0.4, so wA,1 = 0.1 and wA,2 = −0.1. Let
the (unrestricted) group means be

µB,1 = 2.0%, µB,2 = −1.0%, µP,1 = 2.4%, µP,2 = −1.2%.

Then

rB = 0.5(2.0%) + 0.5(−1.0%) = 0.50%,

rP = 0.6(2.4%) + 0.4(−1.2%) = 0.96%,
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so rA = rP − rB = 0.46%. The classical Brinson components are

A = ∑
g

(wP,g − wB,g)(µB,g − rB) = 0.30%,

S = ∑
g

wB,g(µP,g − µB,g) = 0.10%,

I = ∑
g

(wP,g − wB,g)(µP,g − µB,g) = 0.06%,

so A + S + I = rA, as required.

4.1 Balanced precision
If the two regressions have balanced precision, Γ is approximately block-
diagonal with equal blocks, Γ = diag(Σ, Σ), and negligible cross-covariance.
When both estimates are equally precise, the interaction effect should be split
evenly between allocation and selection. We can verify that the restricted
gls update indeed produces this outcome.

In this case,

H Γ H ′ = 2Σ, Γ H ′ =

[
−Σ

Σ

]

with H = [−IG IG].
Write the interaction scalar I as the deviation from the constraint

I ≡ w′
AD(µ̂P − µ̂B) = w′

AD H m̂.

We can plug these into the update equation

m̂,∗ = m̂− Γ H ′D′wA
(
w′

ADH Γ H ′D′wA
)−1w′

ADHm̂

and notice that the central term w′
ADH Γ H ′D′wA = 2 w′

ADΣD′wA is a
scalar. This gives the block adjustments

∆µB ≡ µ̂ ∗B − µ̂B =
ΣD′wA

2 w′
ADΣD′wA

I,

∆µP ≡ µ̂ ∗P − µ̂P = − ΣD′wA
2 w′

ADΣD′wA
I.

The term ΣD′wA
(
2 w′

ADΣD′wA
)−1 plays the same role as the regression

coefficient of the group-mean vector on the fitted active return. The nu-
merator ΣD′wA is the covariance between the estimated group means and
the active fitted return, and the denominator is twice its variance. Hence,
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the update to each block can be viewed as a regression-style adjustment:
the group means move in proportion to their beta with the active fitted
return and in proportion to the distance from the active-exact constraint.
Group-mean components that are estimated with higher uncertainty (larger
variance in Γ) or that covary more with the active return absorb a larger
share of the adjustment, just as in a standard gls update.

The updated allocation effect is A∗ = w′
A r̂ ∗B = w′

ADµ̂ ∗B , and the update
to the allocation component is

∆A = w′
AD ∆µB =

w′
ADΣD′wA

2 w′
ADΣD′wA

I = 1
2 I.

By exactness, after the update A∗ + S∗ = A + S + I, so

∆S = I −∆A = 1
2 I.

Therefore, under balanced precision the restricted gls update splits the
interaction approximately 50/50,

A∗ = A + 1
2 I = 0.33%, S∗ = S + 1

2 I = 0.13%,

with I∗ = 0 by construction. This produces complete attribution with
A∗ + S∗ = rA = 0.46%.4

If the benchmark and portfolio mean estimates have unequal precision
or non-negligible cross-covariance, the same algebra yields unequal shares
that are determined by the blocks of Γ (see section 3.4).

4.2 Spherical specific risk and optimal interaction splits
For cases where the reallocation may not be equal, we now consider cases
where regression precision is determined mainly by the dispersion of portfo-
lio weights. This occurs when returns have equal residual risk but portfolios
differ in concentration. In this setting, differences in diversification alone
determine the relative precision of the benchmark- and portfolio-weighted
regressions, which in turn determines the optimal reallocation of the inter-
action term. The spherical risk case extends the balanced-precision logic
by allowing the benchmark and portfolio regressions to differ in effective
sampling precision because of unequal diversification.

4 If the portfolio and benchmark employ different leverage, w′
Aι ̸= 0, the updated

allocation effect includes a funding/leverage adjustment, ∆A = 1
2 I − (w′

Aι) ∆rB, where
∆rB = (w′

BD ΣD′wA)/(2 w′
ADΣD′wA) I. Many reports show active attribution on a leverage-

matched basis, in which case this term is zero by construction.
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Under spherical residual risk, Σ = σ2 IN , each group-level regression has
sampling variance that depends only on the dispersion of its weights. The
benchmark- and portfolio-weighted group mean estimates therefore have
block-diagonal covariance

Γ =

[
ΣB 0

0 ΣP

]
,

with ΣB = σ2 diag(sB,1, . . . , sB,G) and ΣP = σ2 diag(sP,1, . . . , sP,G), where
sB,g ∝ ∑i∈g w2

B,i and sP,g ∝ ∑i∈g w2
P,i measure the effective concentration of

the benchmark and portfolio within group g.
Starting from the restricted gls update,

m̂ ∗ = m̂− ΓH ′D′wA
(
w′

ADHΓH ′D′wA
)−1 w′

ADHm̂,

with H = [−IG IG] and m̂′ = [µ̂′B, µ̂′P], as before. Define the scalar interaction
as the deviation from the restriction, I = w′

AD(µ̂P − µ̂B). Using ΓH ′ =
[−ΣB; ΣP] and HΓH ′ = ΣB + ΣP, we obtain the block updates

∆µB =
ΣB D′wA

w′
AD(ΣB + ΣP)D′wA

I,

∆µP = − ΣP D′wA
w′

AD(ΣB + ΣP)D′wA
I.

The corresponding adjustments to the allocation and selection effects are

A∗ = A + λA I, S∗ = S + λS I, λA + λS = 1,

where the optimal reallocation weights follow directly from from the formu-
las above as

λA =
w′

ADΣBD′wA

w′
AD(ΣB + ΣP)D′wA

, λS =
w′

ADΣPD′wA

w′
AD(ΣB + ΣP)D′wA

.

If the portfolio has uniform relative concentration sP,g = k sB,g across
groups, the ratio

k ≡
w′

PwP

w′
BwB

fully characterizes the relative sampling precision of the two regressions.5

5 The Brinson regressions must use the portfolio’s actual (fully levered) weights to reproduce
the correct group-wise means. The relative concentration index k appropriately reflects leverage:
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The weight expressions simplify to

λS =
1

1 + k
, λA =

k
1 + k

.

Under spherical return risk, the concentration ratio k measures the rela-
tive sampling variance of the portfolio- and benchmark-weighted regressions.
When k > 1, the portfolio is more concentrated and its group means are
estimated less precisely; when k < 1, the portfolio is more diversified and
its group means are estimated more precisely. Because the selection effect
depends on the difference between the two regressions, while the allocation
effect depends only on the benchmark, changes in portfolio concentration af-
fect the noise in selection more strongly than in allocation. As concentration
rises, the gls update assigns a larger share of the interaction to allocation;
as concentration falls, it assigns a larger share to selection.

Figure 1 shows this relationship for several concentration levels. When
k = 1 (equal diversification), the split is 50/50. Even moderate concentration
tilts the optimal redistribution substantially: if the portfolio holds only half
the benchmark’s names per sector, the interaction shifts from a 50/50 split
to roughly one-third selection and two-thirds allocation. This statistical
asymmetry grows with relative portfolio concentration, reflecting that more
concentrated portfolios provide less precise within-group evidence and
therefore merit smaller selection adjustments. However, it requires extreme
differences in portfolio concentration to make a 100% reallocation of the
interaction effect to either allocation or selection statistically optimal.

To illustrate numerically, suppose the portfolio is approximately twice as
concentrated as the benchmark (k = 2). The gls weights are then λS = 1/3
and λA = 2/3, implying

A∗ = A + 2
3 I = 0.34%,

S∗ = S + 1
3 I = 0.12%.

The adjusted effects again sum to rA = 0.46%, but the reallocation now
places greater emphasis on the allocation component. Such asymmetry
arises automatically from the relative statistical precision of the two regres-
sions, without any arbitrary manual adjustment. The same logic applies
symmetrically when the portfolio is more diversified than the benchmark, in
which case the selection component absorbs a larger share of the interaction.

higher gross exposure increases the sampling variance of the portfolio-weighted regression
and thus tilts the optimal reallocation.
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Figure 1: Optimal GLS Split of Interaction Effects
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The figure shows the statistically optimal distribution of the interaction effect I across allocation
A and selection S. The optimal split adds a share λA of the interaction effect to the allocation
component and λS to the selection component, so that the updated allocation and selection
effects are

A∗ = A + λA I and S∗ = S + λS I.

If returns have spherical risk, ∆ = σ2 I, the concentration multiplier k measures relative
portfolio diversification and is defined as

k = (w′
PwP)/(w′

BwB),

where wP and wB are the portfolio and benchmark weights, respectively. Lower k values
correspond to more diversified portfolios, while higher values correspond to more concentrated
portfolios.

The optimal reallocation shares are

λA = k/(k + 1) and λS = 1/(k + 1),

so that we distribute more of the interaction term to allocation for more concentrated portfolios,
which contain more estimation error.

When concentration ratios differ across groups, the restricted gls update
reallocates the interaction term heterogeneously across them. Now, each
group g has its own effective precision ratio

kg =
sP,g

sB,g
=

∑i∈g w2
P,i

∑i∈g w2
B,i

,

so that

λS,g =
1

1 + kg
, λA,g =

kg

1 + kg
.
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Groups with more concentrated portfolio weights (kg > 1) receive a larger
reallocation toward allocation and a smaller one toward selection, while
more diversified groups (kg < 1) receive the opposite treatment. If we define
ag = D′wA,g, the overall portfolio-level split is

λS =
∑g a′gΣP,gag

∑g a′g(ΣB,g + ΣP,g)ag
, λA = 1− λS,

which is a weighted average of these group-level shares, determined by
each group’s contribution to active risk. This formulation highlights that
the gls adjustment acts locally within groups, with each group’s share of
the interaction depending on its own relative precision. Note, however, that
the residual interaction effects generally remain nonzero within each group.
Elimination of interaction terms for all groups requires active-exactness
constraints for each group rather than the single portfolio-wide restriction
we use here. Appendix A discuss the group-specific constraints.

5 Summary
Both factor attribution and Brinson attribution can be expressed as regres-
sion problems. We can redistributed the nuisance residuals or interaction
terms by applying a linear restriction to the regressions. This ensures that
the attribution is complete and economically interpretable. The restricted re-
gression framework provides a unified and flexible foundation for complete
portfolio return attribution.

The statistical results suggest that, for portfolios that remain reasonably
close to their benchmarks, splitting the interaction term equally between
allocation and selection effects is typically near optimal. When portfolios
are materially more concentrated than their benchmarks, holding fewer
or larger positions within the same universe, the reallocation tends to tilt
toward the allocation component. This reflects greater uncertainty in the
within-group (selection) estimates. Conversely, when portfolios include
securities outside the benchmark or are more diversified across names or
markets, the reallocation may lean toward the selection component.

For multi-period attribution, one can aggregate period-by-period results
or apply smoothing techniques such as those of Cariño (1999), Menchero
(2000), and Frongello (2002), which adjust period returns so that the cumu-
lative result matches the portfolio’s multi-period performance. Naturally,
the approach developed here suggests that cross-sectional and time-series
restrictions applied simultaneously to panel regressions are an interesting
alternative to these ad hoc smoothing techniques.
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Panel regression methods can provide a complementary extension by
imposing both cross-sectional and time-series restrictions. This enables arith-
metic attribution that matches compounded returns through multi-period
smoothing. Such time-series restrictions, closely related to the smoothing
methods of Cariño (1999), Menchero (2000), and Frongello (2002), represent
a natural direction for future work.
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A Group-Level Active-Exactness Restrictions
In the main text we imposed a single active-exactness restriction that jointly
adjusts the benchmark- and portfolio-weighted regressions so that the
portfolio-weighted active residuals vanish:

w′
AD

(
µ̂ ∗P − µ̂ ∗B

)
= 0. (27)

This ensures that the portfolio’s active return equals the sum of allocation
and selection effects, with no residual or interaction term. In some reporting
frameworks, investors also display allocation, selection, and interaction
effects by sector. This appendix generalizes the single restriction to a set of
group-level restrictions that eliminate interaction terms within each group.

A.1 Multiple active-exactness constraints
Let g = 1, . . . , G index groups (e.g., sectors), and define the diagonal selector
Sg that isolates assets belonging to group g. Each Sg is an N × N diagonal
matrix with ones for assets in group g and zeros elsewhere, so that Sgr
retains only the returns of assets in g. This choice preserves consistent vector
dimensions across all groups.

We continue to define wA = wP −wB as the vector of active portfolio
weights and

m̂ ≡
[

µ̂B

µ̂P

]
, H ≡

[
−IG IG

]
, (28)

so that Hm̂ = µ̂P − µ̂B. For each group g, define cg = SgwA as the active-
weight vector restricted to assets in that group, and let C = [c1, . . . , cG]
stack these vectors. The group-level active-exactness condition requires the
portfolio-weighted residual in each group to vanish:

c′gD Hm̂ ∗ = 0, g = 1, . . . , G. (29)

Stacking these restrictions yields

C′D Hm̂ ∗ = 0. (30)

If a group has zero active weight (wP,g = wB,g), the corresponding column
of C is zero and can be omitted. Summing all group constraints recovers
the single portfolio-level restriction used in the main text.
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A.2 Restricted GLS formulation
Let m̂ denote the unrestricted stacked group-mean estimates obtained from
the two separate regressions. To satisfy the Gc group-level active-exactness
constraints C′DHm̂ ∗ = 0 while minimally disturbing the unrestricted esti-
mates, we solve the restricted GLS problem

min
m

1
2 (m− m̂)′Γ−1(m− m̂) s.t. C′DHm = 0, (31)

where Γ = Var(m̂) is the stacked covariance matrix of the unrestricted
group-mean estimates, constructed exactly as in section 3.4 from the residual
covariance ∆ = MW Σ M ′

W .

Once again, the standard restricted GLS solution is

m̂ ∗ = m̂− Γ (C′DH)′
[
C′DH Γ (C′DH)′

]−1C′DH m̂. (32)

The updated stacked estimates m̂ ∗ = (µ̂ ∗B , µ̂ ∗P)′ jointly satisfy

C′D Hm̂ ∗ = 0, (33)

so that every constrained group has zero interaction term. Because the
portfolio total is the sum of all groups, the overall portfolio-level interaction
term also vanishes.

A.3 Interpretation and practical remarks
This formulation generalizes the single portfolio-level active-exactness re-
striction in a natural way. The one-constraint system of the main text is
recovered when C = c. Adding further constraints enforces zero inter-
action effects within each group while preserving the total active return
rA = A + S. Although these additional restrictions introduce slightly more
distortion relative to the unrestricted estimates m̂, the impact is typically
small when G ≪ N and most groups contain many securities. The system
(32) or its equivalent KKT form is symmetric indefinite and can be solved
efficiently via an LDL′ factorization, as recommended by Greene and Seaks
(1991). This generalization is therefore both conceptually straightforward
and practically useful for attribution systems that report sector-level effects.

B Long-Short and Market-Neutral Portfolios
Factor-based attribution extends naturally to longâĂŞshort and market-
neutral portfolios. Negative portfolio or benchmark weights cause no
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difficulties in computing factor exposures or attributing returns. For market-
neutral portfolios, we can use notional allocations to define portfolio weights
and proceed exactly as before. Once the portfolio weights are well defined,
factor-based return attribution, whether unconstrained or under the linear
restriction introduced in the main text, remains valid. Using a cash bench-
mark for a market-neutral portfolio is economically sensible and poses no
technical problems for factor-based attribution.

Brinson-style attribution, however, requires additional care when port-
folio allocations are zero or when the portfolio is market-neutral. In this
case, the natural cash benchmark has zero exposure to all risky assets and
produces zero returns in each group, so allocation and selection effects for
risky assets vanish by construction. To recover economically meaningful
attributions, many practitioners split market-neutral portfolios into separate
long and short partitions. Standard attribution is then performed on the
long side, and again on the absolute value of the short positions, both
relative to the same long-only benchmark; the results are then combined
(long minus short). In this formulation, a long-only benchmark provides a
natural reference for both sides.

This split-book approach can also be used within the restricted regression
framework developed in the main text. Each sleeve (long and short) can
be analyzed separately using the same active-exactness restriction, and the
resulting effects recombined to yield a coherent, additive attribution for the
overall market-neutral portfolio.
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